4,155 research outputs found

    Designer Supersurafaces via Bioinspiration and Biomimetics for Dental materials and Structures

    Get PDF
    The design of surfaces and interfaces gives rise to superior qualities and properties to materials and structures. The interface between biology and materials in nature is being closely examined at the smallest scales for a number of significant reasons. It is recognised that the properties of surfaces have definite biological effects that can be harnessed in clinical regeneration biology. Also the deeper understanding of surface interactions between cells and matrices in human biology is spurring the fabrication of biomimetic and bioinspired versions of these natural designs. The new emerging science of bioinspired surface engineering is helping to improve clinical performances for biomaterials and biostructures because it resolves the problems necessary to optimise integration of implant biomaterials and structures. One of the major developments is the use of surface topography, which is now being exploited for microbial control, steering stem cell behaviours in proliferation and differentiation and adhesive surfaces for better bonding with tissues. In this Chapter we will explore the status of these super surfaces and examine the possibilities for the next generation of dental biomaterials and implants.published_or_final_versio

    Cell transfection with a β-Cyclodextrin-PEI-Propane-1,2,3 Triol Nanopolymer

    Get PDF
    published_or_final_versio

    Epitope Mapping of Antibodies Suggests the Novel Membrane Topology of B-Cell Receptor Associated Protein 31 on the Cell Surface of Embryonic Stem Cells: The Novel Membrane Topology of BAP31

    Get PDF
    When located in the endoplasmic reticulum (ER) membrane, B-cell receptor associated protein 31 (BAP31) is involved in the export of secreted proteins from the ER to the plasma membrane. In a previous study, we generated two monoclonal antibodies (mAbs), 297-D4 and 144-A8, that bound to surface molecules on human embryonic stem cells (hESCs), but not to surface molecules on mouse embryonic stem cells (mESCs). Subsequent studies revealed that the mAbs recognized BAP31 on the surface of hESCs. To investigate the membrane topology of BAP31 on the cell surface, we first examined the epitope specificity of 297-D4 and 144-A8, as well as a polyclonal anti-BAP31 antibody (alpha-BAP31). We generated a series of GST-fused BAP31 mutant proteins in which BAP31 was serially deleted at the C-terminus. GST-fused BAP31 mutant proteins were then screened to identify the epitopes targeted by the antibodies. Both 297-D4 and 144-A8 recognized C-terminal residues 208-217, while alpha-BAP31 recognized C-terminal residues 165-246, of BAP31 on hESCs, suggesting that the C-terminal domain of BAP31 is exposed on the cell surface. The polyclonal antibody alpha-BAP31 bound to mESCs, which confirmed that the C-terminal domain of BAP31 is also exposed on the surface of these cells. Our results show for the first time the novel membrane topology of cell surface-expressed BAP31 as the extracellular exposure of the BAP31 C-terminal domain was not predicted from previous studies.published_or_final_versio

    Temporal and Spatial Expression Patterns of miR-302 and miR-367 During Early Embryonic Chick Development

    Get PDF
    published_or_final_versio

    Biologic stability of plasma ion-implanted miniscrews

    Get PDF
    published_or_final_versio

    Effect of alendronate on bone remodeling around implant in the rat

    Get PDF
    published_or_final_versio

    Distinctive Genetic Activity Pattern of the Human Dental Pulp between Deciduous and Permanent Teeth

    Get PDF
    published_or_final_versio

    Editorial

    Full text link
    corecore